Automorphisms of Certain Lie Algebras of Upper Triangular Matrices over a Commutative Ring
نویسندگان
چکیده
منابع مشابه
Non-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملAutomorphisms of Verardi Groups: Small Upper Triangular Matrices over Rings
Verardi’s construction of special groups of prime exponent is generalized, and put into a context that helps to decide isomorphism problems and to determine the full group of automorphisms (or at least the corresponding orbit decomposition). The groups in question may be interpreted as groups of unitriangular matrices over suitable rings. Finiteness is not assumed.
متن کاملIRRELEVANT ATTACHED PRIME IDEALS OF A CERTAIN ARTINIAN MODULE OVER A COMMUTATIVE RING
Let M be an Artinian module over the commutative ring A (with nonzero identity) and a p spec A be such that a is a finitely generated ideal of A and aM = M. Also suppose that H = H where H. = M/ (0: a )for i
متن کاملDecomposition of Automorphisms of Certain Solvable Subalgebra of Symplectic Lie Algebra over Commutative Rings
متن کامل
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1997
ISSN: 0021-8693
DOI: 10.1006/jabr.1996.6866